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used in quantum computing
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Quantum invariants

Theorem (Kuperberg, 2009; Algic and Lo, 2014):
Exact computations (or even good approximations) of the RT
invariant for some choices of C (e.g., Jones polynomial for links
and WRT for closed 3-manifolds) are #P-hard

probability of TRUE ≈ ⟨M⟩
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Consider a logic term with free variables

T : (x ∧ ¬y) ∨ z

P: given an assignment, telling whether the assignment gives
a TRUE statement

Ex.: x → FALSE, y → FALSE, z → TRUE give T → TRUE

NP-hard: for a given term, telling whether there exists one
assignment that makes the sentence TRUE

#P-hard: for a given term, counting how many
assignments make the term TRUE

Theorem (Aaronson, 2005):
Computing the probability of a quantum circuit giving TRUE

is #P-hard
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Does restricting the topology yields to easier algorithms?

A manifold M is irreducible∗ if M is not homemorphic to
the direct sum N1#N2 where N1, N2 ̸= S3

A hyperbolic manifold can be equipped with a (complete)
hyperbolic metric

A manifold is small∗ if every embedded orientable surface
on it is compressible

(H.E. and C.M., 2025) No
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restrict the topology
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M “ ∈ ”#P-hard

efficient

must be the
bottleneck



Thank you!


